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HORIZONS OF 
PREDICTION
Can we leverage the power of Machine Learning to predict 
complex psychobehavioral phenomena? 

6.1 BASIC SCIENCE

Popular depictions of military re-
search and development are abun-
dant. Unfortunately, however, 

visions of military scientists in white 
lab coats crafting futuristic weapons in 
batcave-like laboratories have an unin-
tended side effect: the expectation 
that scientific breakthroughs happen 
frequently and immediately. The reali-
ty, unfortunately, is that most research 
is more mundane and time consuming. 
The building blocks of technologies like 
radar-deflecting stealth panels or la-
ser-guided munitions come in the form 
of small but significant scientific baby 
steps, documented in technical reports, 
conference proceedings, and scientific 
journals. Vannevar Bush, first director of 
the Office of Scientific Research and De-
velopment and the person who ran the 
military’s research and development du-
ring WWII, once famously said that basic 
research “creates the fund from which 
the practical applications of knowledge 
must be drawn” (1, Ch. 3). The US Go-
vernment’s strategy to invest in basic 
research represents its understanding of 
the fundamental relationship between 
scientific knowledge and its offspring 
practical applications. This article highli-
ghts one example of basic research (6.1 
on the RDT&E funding spectrum) in the 
realm of military medicine. To set the 
stage and introduce the topic, let’s begin 
with a brief scenario.
 
A Marine helicopter is performing rou-
tine training when suddenly one of the 
engines experiences a catastrophic fai-

lure. Despite the heroic efforts of the pi-
lots, the helicopter crashes. Four of the 
six crew members on board, including 
both pilots, die in the crash. The remai-
ning two crew members are both injured 
and are taken to the hospital where they 
both spend several weeks recovering 
from their injuries.  
 
A year later, one of the surviving crew 
members has returned to her job and is 
experiencing no serious symptoms of 
prolonged stress after the accident. She 
has moved on from the traumatic event, 
and shows signs of continuing growth. 
She has strengthened her relationships 
with her loved ones and family, and has 
renewed her interests in hobbies such 
as playing ultimate frisbee and long-dis-
tance bicycling. Because of the positive 
interactions she experienced with her 
caregivers while in the hospital, she has 
begun taking college courses and is pre-
paring to apply to a nursing program. 
She has a renewed sense of apprecia-
tion for life, and seeks to be mindful and 
thankful in her daily life, activities, and 
relationships.
 
The other crew member, however, has 
not fared as well. He has been expe-
riencing serious adverse symptoms 
of prolonged stress since shortly after 
being released from the hospital. He 
experiences frequent nightmares, and 
is easily startled and reacts uncontro-
llably to being surprised to the point 
of becoming enraged. He angers easily, 
and is increasingly irritable. Depression, 

anxiety, and a prolonged sense of dread 
make it increasingly difficult for him to 
function in social circumstances. Becau-
se of frequent outbursts and unstable 
behavior at work, he was removed from 
flight status and his security clearance 
was frozen pending a medical review. 
Eventually his symptoms become so se-
vere that he is admitted to an inpatient 
facility to manage his ever-growing ina-
bility to cope with daily life after he tells 
co-workers that it would have been bet-
ter if he had died in the crash and that he 
wishes he was dead on a regular basis. 
He is eventually deemed no longer fit 
for active-duty service and is ultimate-
ly medically separated from the Marine 
Corps. 
 
What factors determine who will reco-
ver from trauma and who will experience 
prolonged psychological stress? Are the-
se factors learned? Can they be trained? 
Or are these factors genetic? Questions 
such as these have interested human 
beings for as long as we have recorded 
human history. People as far back as the 
ancient Greeks noticed and commented 
on how some soldiers are able to ex-
perience traumatic adversity with resi-
lience and carry on their lives after war 
without issue, while others seem to be 
permanently scarred and altered by their 
experiences. Despite many decades of 
modern-day research in genetics and 
the psychology of stress, however, little 
is known or understood about the com-
plex phenomenon known as post-trau-
matic stress disorder (PTSD).
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Traumatic events such as combat expo-
sure, near-death experiences and sexual 
assault affect every person in some way. 
As the Psychiatrist Viktor Frankl once 
put it, “an abnormal reaction to an ab-
normal situation is normal behavior” 
(2, p. 20). Contrary to popular notions 
of PTSD, however, while many people 
develop short term effects (e.g., sleep 
loss, mild anxiety symptoms) following 
a trauma, most people recover within a 
short period of time, and relatively few 
people develop long-term PTSD. The 
trick to preventing serious PTSD is to 
identify early those who are more vul-
nerable and susceptible before chaotic 
expressions of PTSD are allowed to fully 
develop. But as we saw in the vignette 
earlier, predicting who is more or less 
likely to develop long term psychologi-
cal effects of trauma is very difficult. As 
a result, organizations such as the US 
Department of Defense incur extremely 
high costs in terms of manning and me-
dical treatments related to PTSD in ser-
vice members. 

Estimates of the number of service 
members experiencing PTSD are alar-
ming—between 13.5% and 30% of re-
cently deploying troops have tested po-
sitive for PTSD and required significant 
medical treatment (3, 4). This number 
totals over 500,000 troops over the past 
13 years of conflicts in the Middle East 
(5). The total costs of this is in the mul-
tiple billions of dollars, but even greater 
are the costs in terms of retention of 
qualified military personnel and medical 
readiness. 

One of the most common aims in PTSD 
research, therefore, has been to create 
models of patient trajectories that could 
serve as an early warning for patients 
who are likely to need more help reco-
very from a traumatic event. Patient mo-
dels could indicate whether patients are 
improving or whether they are declining 
and moving towards full PTSD in ways 
that current medical practices do not 
afford. Clinicians could use these mo-
dels to inform their treatment decisions, 
which would then improve patient out-
comes. And today there is reason to be 
optimistic that model-based approaches 
to predicting PTSD might be possible 
thanks to recent advancements in arti-
ficial intelligence. 
 
AI is everywhere today—in our cities, 
in our homes, and in some cases even 
in our bodies (6, 7). Due to the recent 
explosion of computer processing 
speed and power, machine learning 
(ML) approaches to data science have 
yielded exciting new opportunities to 
learn more about ourselves and the 
world around us than ever before. ML’s 
advantage comes from its ability to per-
ceive relationships between variables at 
extremely high dimensions. This means 
that ML can learn patterns and asso-
ciations between variables at levels far 
beyond human comprehension, and in 
a fraction of the time it would take for 
humans to perform those same calcula-
tions. ML has been used to successfully 
predict astonishing things with remar-
kable accuracy, from discovering new 
drugs (8) to predicting who might live or 

die in the intensive care ward of a hos-
pital (9). Most recently, my team and I 
began to wonder whether ML could 
predict something as complex as PTSD, 
and whether the future Department of 
Defense could use predictive analytics 
to provide early warnings for personnel 
who are most at risk at developing seve-
re PTSD. Inspired by this question and 
armed with some very bright minds and 
powerful computers, we set out in early 
2020 to answer this basic question. 
 
Through a cooperative agreement be-
tween the U.S. Naval Research Labora-
tory and the Office of Naval Research 
Global, teams of scientists and mathe-
maticians from France and the U.S. tea-
med up to explore how machine learning 
could be used to predict PTSD. In order 
to utilize machine learning, we first must 
have enough data to train the system. To 
get this data, our first step was to utili-
ze an existing bespoke wearable device 
to facilitate data collection. The weara-
ble that we chose had been developed 
in partnership with the Office of Naval 
Research Global, and has already been 
approved for human participants expe-
rimentation through the l’agence natio-
nale de sécurité du médicament et des 
produits de santé (ANSM), which is the 
French equivalent of the U.S. Food and 
Drug Administration. This wearable de-
vice combines a photoplethysmography 
(PPG) meter, with an actimeter and elec-
trodermal activity (EDA) meter. Each of 
these represents the state-of-the-art 
in wearable technologies and facilitate 
things like detailed sleep analysis, eva-
luations of stress, overall physical ac-
tivity, blood pressure, blood flow, and 
oxygen saturation. The device is meant 
to be worn 24 hours a day, and conti-
nuously collects data for months at a 
time. 
 
With this device we collected six mon-
ths’ worth of patient data through a coo-
peration with local treatment centers in 

Our algorithm learns four separate scores 
from the data gathered with our weara-
ble device. Each score is associated with a 
depressive characteristic: diurnal activity, 
anxiety, psychomotor retardation, and cir-
cadian rhythm (sleep). The image on the left 
is all the data from a single patient across a 
period of approximately six months. Patients 
wear the device while in treatment. Their ac-
tivities and physiological data are recorded 
and used to create our predictive algorithm. 
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France, as well as participation with the 
French Army. We collected data from 
200 patients who had been diagnosed 
with major depressive disorder, 200 
patients who had been diagnosed with 
PTSD, and approximately 2,600 healthy 
patients. 

One challenge in modeling PTSD is that 
it has an enormous range of expres-
sions, meaning that two people with 
identical diagnoses may look very diffe-
rent in terms of the symptoms they are 
experiencing. The range of symptoms 
and tendency of those symptoms to be 
subjectively derived via self-reported 
instruments (i.e., surveys filled out by 
patients and interpreted by clinicians) 
further complicates the use of sophis-
ticated mathematical models such as 
those used by machine learning. Ra-
ther than attempting to model and 
predict PTSD directly, therefore, we 
determined that we would first attempt 
to model and predict another malady 
that frequently occurs in coordination 
with PTSD—major depressive disorder 
(MDD). It is estimated that between 50-
70% of patients diagnosed with PTSD 
are also diagnosed or diagnosable with 
MDD (10). In addition to this significant 
overlap, major depressive disorder can 
be more readily identified and diagno-
sed through the use of physiological 
data, such as the types we were collec-
ting. One additional benefit to attemp-
ting to predict MDD for this project was 
that patients in our study were also eva-

luated by licensed clinicians using the 
Montgomery-Asberg depression rating 
scale (MADRS). MADRS is a question-
naire that patients complete at various 
intervals while in treatment, and is used 
by clinicians to document and quanti-
fy the severity of symptoms. Each pa-
tient in our sample received six MADRS 
evaluations, one per month. With this 
MADRS data, we constructed patient 
trajectories, representing ground truth 
for how each patient fared during our 
data collection period. This ground truth 
served as the baseline against which our 
team could evaluate the accuracy of our 
machine learning algorithm. 
 
With these trajectories constructed 
and our data collected, we trained our 
semi-supervised neural network and 
began to explore how it learned what 
features (e.g., heart rate variability, sleep 
disruption, daily step count) provide the 
best predictive power, and how accura-
tely we could predict patient outcomes 
with the data we collected. 

To do this we fed our neural network the 
first 60 days’ worth of patient data, and 
then asked it to predict patient trajec-
tories for the remaining portion of our 
six-month window. We then compared 
these machine-generated trajectories 
with the ground truth we constructed 
from MADRS data. The results were 
very robust. 
 
As you can see from the diagrams Agree, 

the trajectories correlate very highly 
with MADRS data, which is a strong in-
dication that this automated approach 
to detecting complex psychological su-
ffering is entirely feasible. Most notable 
of our findings is that we were able to 
make accurate predictions of patient 
trajectories (e.g., who is likely to relap-
se, who is likely to recover) with only 60 
days of data. This means that a clinician, 
armed with data from a wearable and an 
algorithm like ours, could potentially in-
tervene weeks or months before symp-
toms become severe. This is of immense 
practical value if you consider that the 
current standard of practice for diagno-
sing and quantifying major depressive 
disorder (i.e., MADRS) can only descri-
be how a patient is feeling at any given 
moment, but cannot accurately predict 
what a patient will do in the near or 
far-term future. Even the most skilled 
and seasoned clinician is likely unable 
to make accurate predictions about pa-

Our model built using neural latent ordinary 
differential equations can generate a distri-
bution of future states that can be aggregga-
ted into a single evolution curve. The boxes 
on the left represent the four variables we 
are interested in, collected from our weara-
ble device. The box on the right is the agre-
ggated score. To the right of the red line is 
projected data based on the data to the left 
of the red line. In this example, the model 
was trained on the first 90 days of data, and 
then asked to predict future states. The data 
is robust and reliable out to several weeks 
in the future. Using a system such as this, 
clinicians could possibly detect the onset of 
severe conditions or relapse early enough to 
intervene--something that is impossible to do 
today. 

Agreggated
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tient outcomes, especially when dealing 
with complex pathologies such as major 
depression or PTSD. As you can see in 
the figure below, a clinician treating this 
patient at Time 50 may believe this pa-
tient is getting significantly better, when 
in reality they will soon experience a 
significant relapse and a return to clini-
cally significant symptoms shortly after 
this data point. It is worth repeating that 
our algorithm accurately predicted this 
trajectory, despite only having the first 
60 days of data. Only through the added 
computational power of machine lear-
ning can clinicians hope to gain an edge 
in forecasting future patient states. 
 
We have demonstrated the feasibility of 
an approach by utilizing technical and 
scientific expertise. Out of this small 
study may grow a technology that could 
one day greatly reduce the long-term 
effects of trauma, but there are many 
other studies necessary before the U.S. 
Department of Defense might be willing 
to embrace this approach (or one like it) 
at full scale. Such is the nature of basic 
6.1 research. Through a small invest-
ment in time and resources, we have 
grown our knowledge and explored so-
mething new. The next step in the RD-
T&E journey (6.2) would be to expand 
this research and focus it further. 

If you would like to read a more in-depth 
account of this research, you can read 
our article published in the International 
Journal Human-Intelligent Systems Inte-
gration: 

Fompeyrine, D.A., Vorm, E.S., Ricka, N. et 
al. Enhancing human-machine teaming 
for medical prognosis through neural 
ordinary differential equations (NODEs). 
Hum.-Intell. Syst. Integr. (2021). https://
doi.org/10.1007/s42454-021-00037-z
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An example of our algorithm’s prediction of patient outcome. Blue line is the algorithm’s prediction. Yellow dotted line is the actual MADRS score. 
Vertical magenta line indicates the 60-day mark. To the left of the magenta line the system was trained on actual data. To the right of the magenta 
line the system is projecting patient outcomes based on physiological data collected from a wearable device. Our algorithm correlates very closely 
with ground-truth MADRS, and is capable of operating far beyond human horizons of prediction. 


